Artificial Intelligence for Adaptive Learning in Health Professions Education: A Scoping Review of Emerging Innovations
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INTRODUCTION RESULTS

Study Characteristics
« 37 studies included (2005-2024).
« Growth in publications accelerated after 2020. (see trend chart)

* Most studies are exploratory with small sample sizes.
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RESULTS (CONT.)

Gaps ldentified

« Evaluation focus: Mostly task accuracy & completion
time; rarely reflection, retention, or behavior change.

* Learner role: Typically passive, limited goal-setting,
reflection, or agency.

* Feedback: Often static/system-driven, not fostering
self-regulated learning or metacognition.

* Theoretical grounding: Few systems are anchored in
educational theory.

CONCLUSION

* Al systems demonstrate technical sophistication but
limited pedagogical adaptivity.

* Most designs emphasize automation and performance,
underutilizing Al's potential to support reflection,
metacognition, and learner agency.

* The tiered framework reveals that higher technical
adaptivity increases potential, but not necessarily
achievement, of pedagogical adaptivity.

* Artificial intelligence (Al) is increasingly explored for
personalized/adaptive Iearmng in health professions
education.

» Adaptive learning systems align well with competency-
based education by tailoring instruction, feedback, and
learner pathways.

* Yet, many implementations remain performance-driven,
rather than learner-centered [1-3].

* This review synthesizes evidence on how Al-enabled 15
systems support adaptivity and what pedagogical 10

implications emerge. 5 I I
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* Map existing Al-enabled adaptive learning systems in Von
health professions education.

» Classify systems by degree of adaptivity.

« Examine alignment with educational theory and » Supervised ML (54%)
learner-centered design. » Natural Language Processing (35%)

MATERIALS & METHODS + Generative Al (8%)

» Scoping review (Joanna Briggs Institute methodology Tiered Classification of Al-Enabled Adaptive Systems
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« Search strategy: Developed with two and run by one Foundational (n=11)
evidence synthesis librarian(s). Static personalization

_ _ _ _ _ _ *Pre-programmed rules or
« Screening: 7 reviewers; in duplicate, with a third
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Al Techniques

To advance adaptive learning in higher education:

» |ntegrate formative feedback aligned with self-regulated
learning.

* Foster metacognition and learner agency through
learner-centered design.

/Fully Adaptive (n=18) \
Continuous personalization
*Uses multimodal learner data
(physiology, NLP, etc.)

/Semi-Adaptive (n=8)
Limited real-time adjustment
*Adapts to learner
responses/choices

branching logic
reviewer resolving disagreements.

* Decision tree: Used to ensure consistency in
inclusion/exclusion during full-text review.

« Data extraction: Al techniques, learner inputs,
personalization strategies, timing of adaptation, and
evaluation outcomes.

» Classification: Tiered framework (foundational, semi-
adaptive, fully adaptive).

*One-size-fits-most pathways
Minimal learner input

Studies screened (n = 2811)

Studies excluded (n = 2603)

v

Studies excluded (n = 171)
Review (n = 47)
\1’ Al not used (n = 21)
Mon-English [n = 7)
Abstract only (n = 14)
Institutional Al (n = 5)

Non-peer-re

Studies sought for retrieval (n = 208)

Studies assessed for eligibility (n = 208) >

viewed (n = 4)
Patient education (n = 1)

Wrong intervention (n=1)
Out of scope review (n = 4)

Wrong learner group (n = 20}
Mo educational focus (n = 8}

Non-personalizing Al (n = 39)
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Studies included in review (n = 37)

PRISMA Diagram

\l

)

*Some personalization, not
continuous
Q\larrow scope of feedback
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‘Real-time, dynamic feedback
Enables more individualized

&arning /

Higher technical adaptivity increases the potential, but not the
realization of, pedagogical adaptivity.

Bridging Technical & Pedagogical Adaptivity
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Most Al-enabled
systems show technical
adaptivity through
automation, modeling,
or feedback. However,
few include pedagogical
adaptivity features like
reflection, formative
feedback, or learner
agency.

» Align Al innovation with educational frameworks, not
just technical capacity.

Future direction: Al for education should move beyond
automation to enable deep learning, reflection, and
adaptive expertise.

Al's promise lies not in automation alone, but
In supporting rich, learner-centered
pedagogies.
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