Reducing Friction with Medication Ordering: Aligning Epic Preference Lists with Clinical Practice

Marcus L. Speaker, MD, Kylee A. Karczewski, MD, Kimberly Butterfield, MPH, Lisa A. Uherick, MD

Carilion Clinic Department of Clinical Informatics and Health Analytics
The Office of Well-Being, Virginia Tech Carilion School of Medicine
Dr. Lorna Breen Heroes' Foundation

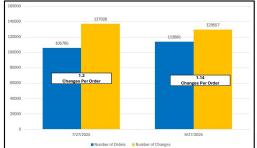
Background

Electronic Health Record (EHR) systems such as Epic are integral to clinical education and workflow. When medication preference lists lack accurate defaults, providers and learners experience ordering inefficiency (friction). At Carillion Clinic, some medication orders are edited 100% of the time, highlighting inefficiencies and a disconnect between system design and clinical practice. This project aims to address this challenge through a targeted informatics intervention aligned with the TEACH mission to foster educational innovation and improve the clinical working and learning environment.

Methods

We conducted a pre-post intervention study at an academic medical center using the Epic EHR. Baseline data were collected over three months, followed by a two-month post-intervention period. We analyzed all medication orders placed from the medication preference list, focusing on the frequency and nature of modifications to default settings.

For each medication, we identified all ordering variants—defined as unique combinations of dose, route, frequency, dispense, quantity, and refills—and determined the most frequently used variant. The intervention involved updating preference list defaults to match the most common variant for each. Chronic medications were standardized to a 90-day supply with three refills, while short-term medications were updated to reflect typical course durations (e.g., 5–10 days)


We compared the rate of order modifications before and after the intervention.

Pre-intervention usage data for commonly ordered medications

Each row represents a single medication showing: Total orders, Number of changes per order, Number of ordering variants, Percentage of orders placed without modifying the default.

Some medications showed no orders placed using defaults, indicating every order required manual edits. These data informed the identification of medications for targeted updates, as described in the Methods section.

Comparison of total medication orders and associated order changes before and after the intervention While overall order volume increased by 8.5% (105,000 + 113,881), the total number of order changes decreased by 7.8% (140,000 + 129,000). This represents approximately 18,000 fewer changes than expected, attributable to improved default settings. Assuming a conservative estimate of 2 seconds per change, this equates to over 10 hours of physician time saved in just two months—demonstrating meaningful workflow improvement from a low-effort, system-level intervention.

Conclusion

Maintaining up-to-date, user-aligned preference lists in Epic may reduce ordering friction, support efficient workflow, and model best practices for learners. This low-cost, high-impact intervention seeks to demonstrate how informatics-driven improvements can enhance both provider experience and health professions education. Sustaining these efforts through regular feedback loops between educators and IT teams may further TEACH's mission of advancing educational excellence through innovation and system optimization.

Further Research

- 1. Expand scope to include laboratory, radiology, and procedure orders
- 2. Iterate and refine by reanalyzing variant frequency to further reduce ordering friction
- 3. Identify additions by analyzing frequently ordered medications not currently on preference lists

These next steps support continuous improvement and broader application of preference list optimization across clinical domains.

Special Thanks

Special thanks to our Physician Builder team for their expertise and collaboration in implementing the preference list updates. Team members include Dr. Matthew Schumaecker, Dr. A. Lucktong, Dr. Steve Kater, Dr. Mark Saab, Dr. C.J. Waasdorp, Dr. Carver Haynes and Karen Williams.

This work was led by Dr. Richard Truxillo, who guided the team through the change process and ensured alignment with clinical needs.

